
A Movement-Artefact-Free Heart-Rate Prediction System

Maarten Thoonen1, Peter Veltink1, Frank Halfwerk2,3, Robby van Delden4, Ying Wang1,5

1 Biomedical Signals and Systems Group, University of Twente, Enschede, The Netherlands
2 Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands

3 Thorax Centrum Twente, Medisch Spectrum Twente, Enschede, The Netherlands
4 Human Media Interaction Group, University of Twente, Enschede, The Netherlands

5 ZGT Academy, Ziekenhuisgroep Twente, Almelo, The Netherlands

Abstract

Continuous automatic heart rate (HR) monitoring plays
a crucial role in timely intervention for postoperative pa-
tients. However, for effective alarm management, patients’
activities of daily living need to be considered as they influ-
ence HR. This explorative study aimed to develop a heart-
rate prediction system while performing six activities. An
experiment with fourteen participants was conducted to
gather data to build a system. This system consisted of
a support-vector machine classifier for activity recogni-
tion and a k-Nearest Neighbors regressor for HR predic-
tion. The R-squared (a goodness-of-fit measure) of the HR
predictor is 79% on average. Given the heterogeneity of
different populations, the system will be further tested and
developed using patient datasets in future towards clinical-
practice applications.

1. Introduction

Clinical-adverse-event monitoring using continuous vi-
tal signs plays a crucial role in timely interventions for
postoperative patients during their recovery period [1].
However, changes in vital signs, e.g. heart rate (HR), are
not only effected by pathological conditions, but also by
daily physical activity, stress, emotion, circadian rhythm,
etc. [2]. An inaccurate monitoring system with reoccur-
ring false alarms can lead to caretakers’ alarm fatigue and
even severe consequences. To accurately assess patients’
health condition and support clinical decisions, a monitor-
ing system should take these factors into account.

However, to our best knowledge, there is no previous
studies that well considered the influence of the factors
during the daily monitoring of patients’ health condition.
In this study, a HR prediction system was developed under
the consideration of daily physical activity influence, and
the physical activity was quantified by our developed hu-
man activity recognition (HAR) model. We also discussed

the advantages and future works of the proposed HR pre-
diction system here.

2. Method

2.1. Experiment

The experiment was ethically approved by the Ethics
Committee Computer & Information Science of the Uni-
versity of Twente (reference number RP 2021-188). 14
healthy participants were included. The experiment was
conducted in the eHealth House, a lab resembling a normal
apartment. The lab is equipped with cameras and micro-
phones to monitor and record experimental activities. The
floor map of the eHealth House is shown in Figure 1.

The experiment protocol was designed according to Ac-
tivities of Daily Living (ADL), similar studies [3], and ac-
tivities that physiotherapists normally use at a hospital set-
ting. Six main activity classes were executed: standing,
sitting, lying, walking, climbing stairs, and cycling. The
experiment was split up into three main parts: controlled
movement, free movement, and cycling. The controlled
part consisted of standing, sitting on the edge of the bed or
on a chair, lying in a supine position, and 12-meter walk-
ing under a researcher’s instructions at a fixed location.
Walking was executed in a natural rhythm at three differ-
ent speeds: self-selected slow, normal and fast. During the
free movement tasks, participants were instructed to exe-
cute daily life tasks, like ‘make a cup of tea’ or ‘fetch an
object from another room’, and climb stairs at three differ-
ent self-selected speeds.

The experiment was ended by 10 minutes of cycling.
The cycling consisted of three parts: three minutes of
warming up at a moderate intensity, six minutes of cycling
at a high power level, and one minute of cooling down at
a low power level. HR of approximately 140 beats per
minute (BPM) was used as the target for the high power
part [4]. The researcher monitored the HR during cycling
and adjusted the power level accordingly.
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Figure 1. Floor map of the eHealth House.
More details can be found on the website:
https://www.utwente.nl/en/techmed/facilities/htwb-
labs/ehealth-house/

2.2. Data collection, processing & Analysis

Participants’ age, sex, length, and weight were collected
through a questionnaire at the end of the experiment. We
applied inertial measurement units (IMUs) attached to the
chest and upper leg for physical activity information ac-
cording to our previous study [5] and prior knowledge
about human movement analysis. The IMUs were of the
type Xsens MTw Awinda [6] and measure six signals: lin-
ear accelerations (in m/s2) in the x-, y- and z-axis and rota-
tional velocities (in degree/s) around the x-, y- and z-axis.
Dry ECG electrodes (Zephyr BioHarness [7]) were used
for the one-lead electrocardiogram (ECG) recording at 250
Hz.

The video and collected signals were labelled by the re-
searcher by watching back the recordings of the experi-
ment using a customized labelling application. All labels
were synchronized to both the IMU and ECG data by care-
ful visual inspection of the ECG and IMU data for recog-
nizable movement influence on the data and finding the
corresponding activity label. The data was segmented by a
5-second sliding window with an overlap of 50% with the

previous window. Each window was assigned the anno-
tated physical-activity label. A linear interpolation was im-
plemented when there were missing data caused by hard-
ware connection issues.

According to our previous study [5] and human move-
ment prior knowledge, 12 features were extracted from
each IMU to describe average body component position
due to gravity and physical activity dynamics. The fea-
tures were the average value and the standard deviation of
each IMU’s six signals. All features were normalized to
have zero mean and unit variance. The golden standard
HR was extracted from the ECG signals using a modified
version of the algorithm by Pan & Tompkins [8] verified
with industry-standard ECG databases: the MIT-BIH Ar-
rhythmia Database [9] and the European ST-T Database
[10].

2.3. Machine Learning

2.3.1. Human Activity Recognition

Based on literature [11] and initial tests, a support vector
machine (SVM) classifier was used and optimized to rec-
ognize the physical activity for each participant and for all
combined participants’ data, respectively. The classifier
was trained based on the 24 features from the IMU data
acquired from the chest and upper leg and transformed to
be linearly separable using a Radial Basis Function (RBF)
kernel. The labelled data was split into training and testing
sets using a stratified five-fold splitter (5-fold cross vali-
dation method). The performance of the classifier was as-
sessed using the f1-score, precision and recall. The final
performances were given by the average score for the five
different splits.

2.3.2. Heart Rate Prediction

The HR was predicted using a k-Nearest Neighbors re-
gressor for each participant. The input data of the regres-
sor were physical-activity intensities, durations, and labels.
Activity intensity was defined as the average of all standard
deviation values from the IMU data scaled to fit in a range
from 0 to 1. Activity duration was the amount of consecu-
tive data windows that the current activity has been going
on for. The activity labels recognized by the HAR classi-
fier was given as the physical-activity label input of the HR
regressor. The regressor used the same five-second data
window with 50% overlap as the HAR classifier. The 5-
fold cross validation method was applied to train and test
the HR regressor. The performance of the regressor was
evaluated with the R2-score that is a goodness-of-fit mea-
sure of a regression model. In addition, the median ab-
solute error, mean absolute error and maximum error be-
tween the predicted HR and the ground truth HR were used
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to assess the performance of the regressor.

3. Results

3.1. Dataset

Nine of 14 experiment participants resulted in a usable
dataset. One was excluded because of corrupted IMU data
files. The other four participants were excluded because of
unusable ECG data caused by a faulty sensor strap which
produced excessive clipping artefacts during activity. One
of the nine participants had around 30% less data available,
as one of the sensor batteries died during cycling. The
participants had a median age of 22 years, with a minimum
of 19 years and a maximum 27 years. Length ranged from
159 cm to 193 cm with a median of 179 cm. Weight ranged
from 45 kg to 93 kg with a median of 65. Five participants
were female and four were male.

3.2. Human Activity Recognition

The HAR reached the mean sensitivity of 87% ± 3%,
the mean precision of 88%±3%, and the mean f1-score of
87%± 3%. For all-participant combined dataset, a confu-
sion matrix (Figure 2) were generated to visualize the per-
formance per activity class and shows that most misclassi-
fied events occurred between the activities “standing” and
“walking”, and between that “stairs” and “walking”.
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Figure 2. Confusion matrix for the combined dataset from
all participants.

3.3. Heart rate prediction

The best performance of the regressor was achieved by
using all input features: activity type, activity length and
activity intensity. The R2-scores ranged from 56% to 89%
with a median of 81% and with the mean of 79% ± 9%.

This was also reflected by the mean absolute error value of
6 ± 0.5 BPM, the median absolute error value of 4 ± 0.6
BPM, and the max error of 43±14 BPM. We visualized the
predicted HR of participant #11 in Figure 3 as an example
that shows the predicted HR overlaid on the measured HR
(golden standard).
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Figure 3. Predicted heart rate from the heart rate regres-
sor model using recognized activity labels, overlaid on the
measured heart rate for participant 11.

4. Discussion

This paper described the first study to develop a HR pre-
diction system with the consideration of the influence of
body movement described by IMU signals. The combina-
tion of features: activity type, activity length and activity
intensity made the HR prediction system reach the best
performance. The synergy between the human activity
recognition system and the HR prediction system showed
promising results with the mean R2-scores of 79% for fu-
ture patients’ automatic heart rate monitoring in clinical
practice.

A data-driven model was developed in this study to pre-
dict the heart rate response to various daily life physical
activity. According to our results, the features about activ-
ity type, length, and intensity play an essential role in the
HR prediction. This precisely represents the homeostasis
of the cardiovascular system: the heart rate changes along
with the variation of the metabolic demands. A combi-
nation between a physiological-theory-driven model and
a data-driven model would be recommend to be applied to
increase the generalizability of the proposed HR prediction
system in future work.

This study was initiated to increase the accuracy of heart
rate monitoring of postoperative patients during their hos-
pital stay. Moreover, the proposed system can be cus-
tomized to estimate the heart rate response to daily life
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physical activity and gain valuable insight into people’s
health condition in their daily life for personalized disease
management and interventions. For example, a broad pop-
ulation’s heart rate and physical activity information col-
lected by currently widely used wearable fitness trackers
can be used as inputs to our proposed system. However,
to apply our proposed method in different population in
daily life, we need to further develop and validate the cur-
rent system according to the target population. As the next
steps, we will further develop our system using the data
collected from in-hospital patients after surgeries and at-
home patients with cardiovascular disease.

Even though our proposed HR prediction system
reached good performances for general physical activity,
the transient changes of HR are still hard to be predicted.
This was probably caused by limited data available for ac-
tivity transition. In future study, we can enlarge the dataset
through focusing on the recognition of activity transition
moments in daily life. A misclassified physical activity
may also lead to the difficult transient HR prediction. For
example, a sudden drop in the predicted HR was observed
in Figure 3 around the 2400th second when the participant
stopped cycling for a short period. The short cycling break
was classified by the HAR classifier as “sitting”, and the
regressor did not consider the previous activity in predict-
ing the HR. A time-series relevant regression model, such
as, long short-term memory, can be applied in the future
system to improve the performance of predicting transient
HR changes.

5. Conclusion

This work has shown that healthy participants’ heart rate
can be predicted by physical activity types, intensity, and
duration. The physical activity recognition system can be
implemented and achieve high accuracy with two move-
ment sensors and limited training data, and this HAR sys-
tem output can be used to feed a data-driven regressor
model to predict HR. We successfully established a syn-
ergy between physical activity recognition and heart rate
prediction system for an movement-artefact free heart rate
monitoring system for future clinical practice.
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